Skip to main content

Nuclear Medicine Technology, B.S.

Saint Louis University's Bachelor of Science in Nuclear Medicine Technology (NMT) prepares graduates for entry-level positions as nuclear medicine technologists.

Nuclear medicine is a medical specialty that uses safe, painless and cost-effective techniques to image the body and treat disease. Nuclear medicine uses very small amounts of radioactive materials to diagnose and treat diseases using gamma cameras or PET/CT scanners. Nuclear medicine imaging is unique in that it documents organ function and structure. It is a method of gathering information that may otherwise be unavailable, require surgery or necessitate more expensive diagnostic tests.

Program Highlights

Today, nuclear medicine offers procedures that are helpful for a broad span of medical specialties, from pediatrics to cardiology and oncology. There are almost 100 nuclear medicine imaging procedures available that include every major organ of the human body.

The advantages of earning your B.S. in Nuclear Medicine Technology at Saint Louis University include:

  • Student-tailored educational curriculum and individual mentorship by faculty in the NMT profession
  • Exceptional clinical preceptors and training sites located conveniently within the St. Louis metropolitan area
  • Strong science curriculum which aids in preparation for immediate job placement as well as a future graduate-level education
  • Medically relevant coursework ideal for pre-professional studies
  • Pre-medicine and pre-physician assistant curriculum options
  • Opportunities to participate in professional conferences with faculty and fellow students

Curriculum Overview

SLU's nuclear medicine technology program includes all basic sciences, as well as an intensive NMT curriculum that includes 1,000 hours of clinical practicum. Upon completing the program, the graduate is eligible for national certification to become a certified nuclear medicine technologist (CNMT).

Nuclear medicine technology students are encouraged to join and participate in the functions of the Saint Louis University Clinical Health Sciences Club.

Clinical and Research Opportunities

Professional coursework in the nuclear medicine technology program is concentrated in the last year and a half of study. Students in the NMT program have opportunities to conduct research and produce projects and papers that are acceptable for publication and could be presented at professional conferences.

Careers

The benefits of SLU's nuclear medicine technology program also include several career opportunities. Graduates can work as technologists in hospitals and clinics. Students may seek positions in information technology, health care administration, sales and training, radiopharmacy labs, teaching and other related fields.

Nearly 20% of graduates proceed to graduate school, with about 50% of the remaining class enrolling in graduate school within five years of employment. Many attend graduate school part-time with assistance from their place of work.

Career advancement opportunities from the position of staff technologist may lead to areas of administration, education, sales or research.

A nuclear medicine technologist has many responsibilities that encompass a wide range of skills. Some responsibilities include:

  • Preparing, calibrating and administering radioactive chemical compounds, known as radiopharmaceuticals.
  • Performing diagnostic imaging procedures using radiation-detection technology.
  • Administering radioactive tracers used to image the organs of the human body.
  • Operating imaging technology, laboratory and computer instrumentation.
  • Providing images, data analysis and patient information to the physician for diagnostic interpretation.
  • Assisting the physician in theranostic procedures.

The mean annual wage for nuclear medicine technologists was $85,300 in 2022 according to the Bureau of Labor Statistics.

Admission Requirements

Freshmen Applicants

Solid academic performance in college preparatory coursework is a primary concern in reviewing a freshman applicant’s file.

Admission criteria include:

  • Minimum cumulative GPA of 2.70 on a 4.00 scale.
  • Saint Louis University has a test-optional admission process for all undergraduate programs. Applicants may submit standardized test scores, but those who choose not to will not be disadvantaged in any way in the admission process. 

Transfer Applicants 

The minimum college transfer GPA is 2.70/4.00.

International Applicants

All admission policies and requirements for domestic students apply to international students, along with the following:

  • You must demonstrate English language proficiency.
  • Proof of financial support must include:
    • A letter of financial support from the person(s) or sponsoring agency funding your time at Saint Louis University.
    • A letter from the sponsor's bank verifying that the funds are available and will be so for the duration of your study at the University.
  • Academic records, in English translation, of students who have undertaken postsecondary studies outside the United States must include the courses taken and/or lectures attended, practical laboratory work, the maximum and minimum grades attainable, the grades earned or the results of all end-of-term examinations, and any honors or degrees received. WES and ECE transcripts are accepted.

Tuition

Tuition Cost Per Year
Undergraduate Tuition $54,760

Additional charges may apply. Other resources are listed below:

Net Price Calculator

Information on Tuition and Fees

Miscellaneous Fees

Information on Summer Tuition

Scholarships and Financial Aid

There are two principal ways to help finance a Saint Louis University education:

  • Scholarships: Awarded based on academic achievement, service, leadership and financial need. In addition to University scholarships, the Doisy College of Health Sciences offers scholarships to sophomores, juniors, seniors and graduate students.
  • Financial Aid: Provided in the form of grants and loans, some of which require repayment.

For priority consideration for merit-based scholarships, applicants should apply for admission by Dec. 1 and complete a Free Application for Federal Student Aid (FAFSA) by March 1.

For more information, visit the Office of Student Financial Services.

Accreditation

The Joint Review Committee on Educational Programs in Nuclear Medicine Technology
820 W. Danforth Rd. #B1
Edmond, OK 73003
405-285-0546
http://jrcnmt.org

Additional Accreditation Information (PDF)

JRCNMT Graduate Outcomes Report

  1. Graduates will be able to demonstrate the Jesuit value of cura personalis as they perform diagnostic imaging procedures.
  2. Graduates will be able to demonstrate effective communication when speaking with both patients and other healthcare professionals in the nuclear medicine department.
  3. Graduates will be able to use knowledge, facts, and data to assess problems and find solutions as they relate to nuclear medicine imaging and computed tomography (CT) procedures.
  4. Graduates will be able to demonstrate the ability to translate didactic knowledge into clinical practice as a nuclear medicine technologist.
  5. Graduates will be able to exhibit professional characteristics expected of nuclear medicine technologists.

Students must earn a "C-" or better in math/stat, science (BIO, CHEM, PHYS, HSCI 3300/3310/3400/3410) and program-specific (NMT prefix) courses.

University Undergraduate Core32-35
Foundation
BIOL 1240
BIOL 1245
General Biology: Information Flow and Evolution
and Principles of Biology I Laboratory
4
CHEM 1080
CHEM 1085
Principles of Chemistry 1 Lecture
and Principles of Chemistry 1 Lab
4
CHEM 1480
CHEM 1485
Principles of Chemistry 2 Lecture
and Principles of Chemistry 2 Lab
4
ENGL 1900Advanced Strategies of Rhetoric and Research3
HCE 1600Embodiment, Life, and Death in Context3
HIM 4750Fundamentals of Clinical Medicine3
HSCI 2000The U.S. Health Care System3
HSCI 2100Health Care Management3
HSCI 2200Medical Terminology3
HSCI 3200Aspects of Health Law3
HSCI 3300
HSCI 3310
Anatomy & Physiology I
and Anatomy & Physiology I Lab
4
HSCI 3400
HSCI 3410
Anatomy and Physiology Lecture II
and Anatomy & Physiology II Lab
4
HSCI 3700Research Methods3
MATH 1320Survey of Calculus3
PHYS 1220
PHYS 1235
General Physics I
and General Physics I Lab
4
PHYS 1240
PHYS 1255
General Physics II
and General Physics II Lab
4
PSY 1010General Psychology3
or SOC 1100 Introduction to Sociology
STAT 1300Elementary Statistics with Computers3
Nuclear Medicine Technology
NMT 4000Nuclear Medicine Procedures I3
NMT 4100Radiation Protection3
NMT 4310Radiation Physics2
NMT 4320Radiochemistry and Radiopharmacy3
NMT 4330Nuclear Med Instrumentation3
NMT 4340Nuclear Medicine Technology Procedures II3
NMT 4350Nuclear Medicine Information Systems3
NMT 4430Emerging Technologies3
NMT 4700Nuclear Medicine Clinical Practicum I4
NMT 4710Nuclear Medicine Senior Seminar I1
NMT 4800Nuclear Medicine Clinical Practicum II2
NMT 490012
NMT 4910Senior Seminar II2
NMT 49601
Total Credits120

Continuation Standards

Nuclear Medicine Technology students must maintain a cumulative GPA of 2.70/4.00

Second Degree Option for Students with Bachelor's Degree

Total semester credits vary based on applicable courses complete in undergraduate program. A specific course plan is individually designed for each applicant.

Students must earn a "C-" or better in math/stat, science (BIO, CHEM, PHYS, HSCI 3300/3310/3400/3410) and program-specific (NMT prefix) courses.

Transfer Credits56
Prerequisite Courses
CHEM 1080
CHEM 1085
Principles of Chemistry 1 Lecture
and Principles of Chemistry 1 Lab
4
CHEM 1480
CHEM 1485
Principles of Chemistry 2 Lecture
and Principles of Chemistry 2 Lab
4
HSCI 3300
HSCI 3310
Anatomy & Physiology I
and Anatomy & Physiology I Lab
4
PHYS 1220
PHYS 1235
General Physics I
and General Physics I Lab
4
PHYS 1240
PHYS 1255
General Physics II
and General Physics II Lab
4
MATH 1320Survey of Calculus3
HCE 1600Embodiment, Life, and Death in Context (or other approved Medical Ethics)3
HSCI 3400
HSCI 3410
Anatomy and Physiology Lecture II
and Anatomy & Physiology II Lab
4
Nuclear Medicine Technology
NMT 4000Nuclear Medicine Procedures I3
NMT 4100Radiation Protection3
NMT 4310Radiation Physics2
NMT 4320Radiochemistry and Radiopharmacy3
NMT 4330Nuclear Med Instrumentation3
NMT 4340Nuclear Medicine Technology Procedures II3
NMT 4350Nuclear Medicine Information Systems3
NMT 4430Emerging Technologies3
NMT 4700Nuclear Medicine Clinical Practicum I4
NMT 4710Nuclear Medicine Senior Seminar I1
NMT 4800Nuclear Medicine Clinical Practicum II2
NMT 490012
NMT 4910Senior Seminar II2
NMT 49601
Total Credits131

Continuation Standards

Nuclear Medicine Technology students must maintain a cumulative GPA of 2.70/4.00

Roadmaps are recommended semester-by-semester plans of study for programs and assume full-time enrollment unless otherwise noted.  

Courses and milestones designated as critical (marked with !) must be completed in the semester listed to ensure a timely graduation. Transfer credit may change the roadmap.

This roadmap should not be used in the place of regular academic advising appointments. All students are encouraged to meet with their advisor/mentor each semester. Requirements, course availability and sequencing are subject to change.

Plan of Study Grid
Year One
FallCredits
BIOL 1240
BIOL 1245
General Biology: Information Flow and Evolution
and Principles of Biology I Laboratory (satisfies CORE 3800)
4
CHEM 1080
CHEM 1085
Principles of Chemistry 1 Lecture
and Principles of Chemistry 1 Lab
4
CORE 1000 Ignite First Year Seminar 2 or 3
ENGL 1900 Advanced Strategies of Rhetoric and Research (satisfies CORE 1900) 3
 Credits13-14
Spring
CHEM 1480
CHEM 1485
Principles of Chemistry 2 Lecture
and Principles of Chemistry 2 Lab
4
CORE 1500 Cura Personalis 1: Self in Community 1
CORE 1200 Eloquentia Perfecta 2: Oral and Visual Communication 3
HSCI 2200 Medical Terminology 3
MATH 1320 Survey of Calculus 3
PSY 1010
or SOC 1100
General Psychology (satisfies CORE 3600)
or Introduction to Sociology
3
 Credits17
Year Two
Fall
HCE 1600 Embodiment, Life, and Death in Context (or any other approved medical ethics) 3
HSCI 2000 The US Health Care System 3
HSCI 3300
HSCI 3310
Anatomy & Physiology I
and Anatomy & Physiology I Lab
4
PHYS 1220
PHYS 1235
General Physics I
and General Physics I Lab
4
 Credits14
Spring
CORE 1700 Ultimate Questions: Philosophy 3
CORE 2500 Cura Personalis 2: Self in Contemplation 0
HSCI 3400
HSCI 3410
Anatomy and Physiology Lecture II
and Anatomy & Physiology II Lab
4
PHYS 1240
PHYS 1255
General Physics II
and General Physics II Lab
4
STAT 1300 Elementary Statistics with Computers (satisfies CORE 3200) 3
 Credits14
Year Three
Fall
HIM 4750 Fundamentals of Clinical Medicine 3
HSCI 3200 Aspects of Health Law 3
HSCI 3700 Research Methods (Critical course:  satisfies CORE 4000) 3
CORE 3400 Ways of Thinking: Aesthetics, History, and Culture 3
 Credits12
Spring
CORE 2800 Eloquentia Perfecta 3: Creative Expression 2-3
HSCI 2100 Health Care Management 3
NMT 4000 Nuclear Medicine Procedures I 3
NMT 4100 Radiation Protection 3
NMT 4350 Nuclear Medicine Information Systems 3
 Credits14-15
Year Four
Fall
NMT 4310 Radiation Physics 2
NMT 4320 Radiochemistry and Radiopharmacy 3
NMT 4330 Nuclear Med Instrumentation 3
NMT 4340 Nuclear Medicine Technology Procedures II 3
NMT 4700 Nuclear Medicine Clinical Practicum I (Reflection-in-Action in development) 4
NMT 4710 Nuclear Medicine Senior Seminar I (CP3 in development) 1
NMT 4800 Nuclear Medicine Clinical Practicum II (taken in the Winter Session) 2
 Credits18
Spring
NMT 4430 Emerging Technologies 3
NMT 4900 Nuclear Medicine Clinical Practicum III 12
NMT 4910 Senior Seminar II 2
NMT 4960 Capstone in Nuclear Medicine 1
 Credits18
 Total Credits120-122

Second Baccalaureate Degree Option

Foundation Courses
Theology or Religion3
Medical Ethics3
Written Composition3
CORE 1200Eloquentia Perfecta 2: Oral and Visual Communication3
Arts (Fine, Performing, Art History or equivalent)3
Humanities3
Natural or Applied Science3
Social or Behavioral Science3
Quantitative Reasoning3
Humanities or Social/Behavioral Science3
Pre-Requisite Requirements
CHEM 1080
CHEM 1085
Principles of Chemistry 1 Lecture
and Principles of Chemistry 1 Lab
4
CHEM 1480
CHEM 1485
Principles of Chemistry 2 Lecture
and Principles of Chemistry 2 Lab
4
HSCI 3300
HSCI 3310
Anatomy & Physiology I
and Anatomy & Physiology I Lab
4
HSCI 3400
HSCI 3410
Anatomy and Physiology Lecture II
and Anatomy & Physiology II Lab
4
PHYS 1220
PHYS 1235
General Physics I
and General Physics I Lab
4
MATH 1320Survey of Calculus3
PHYS 1240
PHYS 1255
General Physics II
and General Physics II Lab
4
HCE 1700Death, Disability, Disease, and the Meaning of Life (or other approved Medical Ethics)3
Total Credits60

Courses to Be Taken at Saint Louis University

Plan of Study Grid
Year One
FallCredits
NMT 4310 Radiation Physics 2
NMT 4320 Radiochemistry and Radiopharmacy 3
NMT 4330 Nuclear Med Instrumentation 3
NMT 4340 Nuclear Medicine Technology Procedures II 3
NMT 4700 Nuclear Medicine Clinical Practicum I 4
NMT 4710 Nuclear Medicine Senior Seminar I 1
NMT 4800 Nuclear Medicine Clinical Practicum II (Taken in Winter Session) 2
 Credits18
Spring
NMT 4000 Nuclear Medicine Procedures I 3
NMT 4100 Radiation Protection 3
NMT 4350 Nuclear Medicine Information Systems 3
 Credits9
Year Two
Spring
NMT 4430 Emerging Technologies 3
NMT 4900 Nuclear Medicine Clinical Practicum III 12
NMT 4910 Senior Seminar II 2
NMT 4960 Capstone in Nuclear Medicine 1
 Credits18
 Total Credits45

Second Degree Option Notes

Successful completion leads to a second baccalaureate degree in nuclear medicine technology. This option is for a student who already possesses a bachelor’s degree and is motivated to become a practicing nuclear medicine technologist in an accelerated time frame.

To be considered for the second baccalaureate degree option, the applicant must have satisfactorily completed a baccalaureate degree with a minimum GPA of 2.7 (on a 4.0 scale), including the prerequisite courses listed above.

The applicant must complete the application for the professional year and submit official transcripts of prior college work through the SLU admission website.

The applicant must show satisfactory evidence of good character and physical ability to perform the functions of the nuclear medicine technologist. All applicants must meet the professional performance and technical standards required by the profession. Students must also successfully complete a drug screen and criminal background check prior to the start of the professional year.

Application to the second baccalaureate option is via a competitive application process, with admission granted on a space-available basis. The selection process includes a personal interview for qualified applicants.

Selection Factors

Among the parameters considered by the selection committee are:

  • Applicant’s academic potential as evidenced by previous performance in college
  • Specific motivation toward the pursuit of a health care profession
  • Evidence of sound judgment
  • Interpersonal and communication skills
  • Job shadowing in a nuclear medicine department is highly recommended

2+SLU programs provide a guided pathway for students transferring from a partner institution. 

Apply for Admission

Contact Doisy College of Health Sciences
Recruitment specialist
314-977-2570
dchs@health.slu.edu